نانوسرامیک‌ها

ساختار زئولیت ها
نانوسرامیک‌ها، سرامیک‌هایی هستند که در ساخت آنها از اجزای اولیه در مقیاس نانو (مانند نانوذرات، نانوتیوپ‌ها و نانولایه‌ها) استفاده شده‌باشد، که هرکدام از این اجزای اولیه، خود از اتمها و مولکولها بدست آمده‌اند. بعنوان مثال، نانوتیوپ یکی از اجزای اولیه‌ا‌ی است که ساختار اولیه کربن c60 را تشکیل می‌دهد. به‌طور کلی فلوچارت سازماندهی نانوسرامیک به شکل زیر می‌باشد : بنابراین مسیر تکامل نانوسرامیک‌ها را می‌توان در سه مرحله خلاصه کرد : مرحله ۱ : سنتز اجرای اولیه مرحله ۲ : ساخت ساختارهای نانو با استفاده از این اجزاء و کنترل خواص مرحله ۳ : ساخت محصول نهایی با استفاده از نانوسرامیک بدست‌آمده از مرحله دوم ویژگیها : ویژگیهای نانوسرامیک‌ها را می‌توان از دو دیدگاه بررسی کرد. یکی ویژگی نانوساختارهای سرامیکی، و دیگری ویژگی محصولات بدست‌آمده است. ویژگیهای نانوساختارهای سرامیکی : کوچک، سبک، دارای خواص جدید، چندکارکردی، هوشمند و دارای سازماندهی مرتبه‌ا‌ی. ویژگیهای محصولات نانوسرامیکی : خواص مکانیکی بهتر: سختی و استحکام بالاتر و انعطاف‌پذیری که ویژگی منحصربه‌فردی برای سرامیک‌هاست. داشتن نسبت سطح به حجم بالا که باعث کنترل دقیق بر سطح می‌شود. دمای زینتر پایین‌تر که باعث تولید اقتصادی و کاهش هزینه‌ها می‌گردد. خواص الکتریکی، مغناطیسی و نوری مطلوب‌تر: قابلیت ابررسانایی در دماهای بالاتر و قابلیت عبور نور بهتر. خواص بایویی بهتر (سازگار با بدن). کاربردها : نانوتکنولوژی باعث ایجاد تحول چشمگیری در صنعت سرامیک گشته‌است. در این میان نانوسرامیک‌ها، خود باعث ایجاد تحول عظیمی در تکنولوژی‌های امروزی مانند الکترونیک، کامپیوتر، ارتباطات، صنایع حمل‌ونقل، صنایع هواپیمایی و نظامی و … خواهندشد. برخی کاربردهای حال و آینده نانوسرامیک‌ها در جدول زیر آمده‌است.آینده حال زمان نانوساختارها نانوروکش‌های چندکارکردی رنگ‌دانه‌ها پولیش‌های مکانیکی-شیمیایی حایل‌های حرارتی حایل‌های اپتیکی (UV و قابل رؤیت) تقویت Imaging مواد جوهرافشان دوغاب‌های روکش ساینده لایه‌های ضبط اطلاعات پوشش‌ها و دیسپرژن‌ها سنسورهای ویژه مولکولی ذخیره انرژی (پیل‌های خورشیدی و باطری‌ها) غربال‌های مولکولی مواد جاذب و غیرجاذب داروسازی کاتالیست‌های ویژه پرکننده‌ها سرامیک‌های دارای سطح ویژه بالا نوارهای ضبط مغناطیسی قطعات اتومبیل فعال‌کننده‌های پیزوالکتریک نیمه‌هادی‌ها لیزرهای کم‌ پارازیت نانوتیوپها برای صفحه نمایشهای وضوح بالا هدهای ضبط GMR نانوابزارهای عملگر شکل‌دهی سوپرپلاستیک سرامیکها مواد ساختاری فوق‌العاده سخت و مستحکم سرماسازهای مغناطیسی سیمان‌های انعطاف‌پذیر مواد مغناطیسی نرم با اتلاف کم ابزارهای برش WC/Co با سختی بالا سیمان‌های نانوکامپوزیت سرامیک‌های تقویت‌شده «الگوریتم ها» و «تراشه» های کوانتومی محاسبات کوانتومی یک زمینه جدید و امیدوارکننده با قابلیت بالقوه بالای محاسباتی است، اگر در مقیاس بزرگ ساخته شود. چندین چالش عمده در ساخت رایانه کوانتومی بزرگ مقیاس، وجود دارد: بررسی و تصدیق محاسبات و معماری سیستم آن. قدرت محاسبات کوانتومی در قابلیت ذخیره‌سازی یک حالت پیچیده در قالب یک “بیت” ساده نهفته است. روش‌های نوینی به منظور ساخت مدارهای منطقی سطح پائین، سوئیچ‌کننده‌ها، سیم‌ها، دروازه‌های اطلاعاتی، تحت پژوهش و توسعه قرار گرفته‌اند که کاملاً متفاوت از تکنیک‌های حاضرند و به طور عمیقی ساخت مدارهای منطقی پیشرفته‌ را تحت تأثیر قرار می‌دهند. از برخی از دیدگاه‌ها، در آینده‌ای نزدیک، در حدود ۲۰ سال آینده، طراحان مدارهای منطقی ممکن است به مدارهائی دسترسی پیدا کنند که یک بیلیون بار از مدارهای حال حاضر سریعترند. مسائلی نظیر طراحی، بکارگیری،‌ تعمیر و نگهداری و کنترل این ابرسیستم‌ها به گونه‌ای که پیچیدگی بیشتر به کارآئی بالاتری منتهی شود، زمانی که سیستم‌های منطقی شامل ۱۰۷، سوئیچ باشد،مهم است. به سختی ممکن است که آنها را به طور کامل و بی‌نقص،‌ بسازیم، بنابر این رسیدگی و اصلاح عملگرهای شامل بررسی هزاران منبع خواهد بود. از این رو طراحی یک سیستم با فضای حداقل، حداقل هزینه در زمان و منابع، یک ارزش است. چنین سیستمی می‌تواند در قالب “توزیع یافته”، “موازی” ویا در یک چهارچوب “سلسله مراتبی” قرار گیرد. سخت‌افزارها و مدارهای منطقی راه درازی را پیموده‌اند. ترانزیستورهای استفاده شده در یک مدار ساده CPU چندین میلیون بار کوچکتر از ترانزیستور اصلی ساخته شده درسال ۱۹۴۷ است. اگر یک ترانزیستور حال حاضر با تکنولوژی ۱۹۴۷ ساخته شود نیازمند یک کیلومتر مربع سطح می‌باشد (قانون مور)، در حالی که در ۱۰ الی ۲۰ سال آینده تکنولوژی موفق به گشودن راهی جهت تولید مدارهای منطقی ۳ بعدی خواهد شد. در این میان، چندین پرسش سخت و پژوهشی که در آکادمی‌ها وصنعت به آن پرداخته می‌شود وجود دارد: گرفتن پیچیدگی‌ها در تحلیل روش‌های تولید SWITCH ،در روش‌های متولد شده به منظور مدل‌سازی چگونگی کارآئی آنها، در مدارهای منطقی مورد نیاز مهندسان، و امتیازات روش‌های نوین فناورانه بر روش های کلاسیک. لحاظ کردن ملاحظاتی مبنی بر تعداد سوئیچ‌ها در واحد سطح و حجم در درون ابزار (گنجایش)، تعداد نهائی سوئیچ‌ها در درون ابزار (حجم)، شرایط حدی عملگرها، سرعت عملگرها، توان مورد نیاز، هزینه تولید و قابلیت اعتماد به تولید و دوره زمانی چرخه عمر آن. پاسخ این تحلیل ها جهت پژوهش‌ها را به سمت روش‌های بهتر تولید سوییچ، هدایت خواهد کرد. ودر نهایت یافتن این که چگونه یک روش ویژه در بهترین شکلش مورد استفاده قرار خواهد گرفت و نیز تحلیل و تباین روش‌های مختلف تولید. حرکت به سمت طراحی ظرفیت ابزار، جهت استفاده مؤثر از ۱۰۱۷ ترانزیستور یا سوئیچ است. چنین طراحی‌هائی در مقیاس‌های مطلوب ، حتی بی‌شباهت در مقایسه با افزایش ظرفیت ابزارها خواهد بود. طراحی‌های قویتر و ابزارهای بررسی قوی‌تر به منظور طراحی “مدارهای منطقی” با چندین مرتبه مغناطیسی بزرگتر و پیچیده‌تر. طراحی پروسه‌های انعطاف‌پذیرتر جهت مسیر تولید از مرحله طراحی منطقی،‌ آزمایش و بررسی، تا بکارگیری در سخت‌افزار.